Application of rate-equilibrium free energy relationship analysis to nonequilibrium ion channel gating mechanisms
نویسنده
چکیده
Rate-equilibrium free energy relationship (REFER) analysis provides information on transition-state structures and has been applied to reveal the temporal sequence in which the different regions of an ion channel protein move during a closed-open conformational transition. To date, the theory used to interpret REFER relationships has been developed only for equilibrium mechanisms. Gating of most ion channels is an equilibrium process, but recently several ion channels have been identified to have retained nonequilibrium traits in their gating cycles, inherited from transporter-like ancestors. So far it has not been examined to what extent REFER analysis is applicable to such systems. By deriving the REFER relationships for a simple nonequilibrium mechanism, this paper addresses whether an equilibrium mechanism can be distinguished from a nonequilibrium one by the characteristics of their REFER plots, and whether information on the transition-state structures can be obtained from REFER plots for gating mechanisms that are known to be nonequilibrium cycles. The results show that REFER plots do not carry information on the equilibrium nature of the underlying gating mechanism. Both equilibrium and nonequilibrium mechanisms can result in linear or nonlinear REFER plots, and complementarity of REFER slopes for opening and closing transitions is a trivial feature true for any mechanism. Additionally, REFER analysis provides limited information about the transition-state structures for gating schemes that are known to be nonequilibrium cycles.
منابع مشابه
Catalyst-like modulation of transition states for CFTR channel opening and closing: New stimulation strategy exploits nonequilibrium gating
Cystic fibrosis transmembrane conductance regulator (CFTR) is the chloride ion channel mutated in cystic fibrosis (CF) patients. It is an ATP-binding cassette protein, and its resulting cyclic nonequilibrium gating mechanism sets it apart from most other ion channels. The most common CF mutation (ΔF508) impairs folding of CFTR but also channel gating, reducing open probability (Po). This gating...
متن کاملJgp_201711777 413..416
By tracking conformational transitions of individual ion channel proteins, single-channel recordings allow the observer to deduce gating mechanisms, as well as estimate rate constants of microscopic gating steps. For most ion channels, gating mechanisms are complex, comprising multiple stable open (O) and closed (C) conformations among which conformational transitions may follow a network of po...
متن کاملJgp_201711777 413..416
By tracking conformational transitions of individual ion channel proteins, single-channel recordings allow the observer to deduce gating mechanisms, as well as estimate rate constants of microscopic gating steps. For most ion channels, gating mechanisms are complex, comprising multiple stable open (O) and closed (C) conformations among which conformational transitions may follow a network of po...
متن کاملJgp_201711777 1..4
By tracking conformational transitions of individual ion channel proteins, single-channel recordings allow the observer to deduce gating mechanisms, as well as estimate rate constants of microscopic gating steps. For most ion channels, gating mechanisms are complex, comprising multiple stable open (O) and closed (C) conformations among which conformational transitions may follow a network of po...
متن کاملJgp_201711777 413..416
By tracking conformational transitions of individual ion channel proteins, single-channel recordings allow the observer to deduce gating mechanisms, as well as estimate rate constants of microscopic gating steps. For most ion channels, gating mechanisms are complex, comprising multiple stable open (O) and closed (C) conformations among which conformational transitions may follow a network of po...
متن کامل